Qualifying Studies for Home-based Asthma Interventions: Health Care Utilization Outcomes

<table>
<thead>
<tr>
<th>Author & Year (Study Period)</th>
<th>Location, Country Urbanicity Study Population Sample Size</th>
<th>Intervention Components Follow up time Comparison</th>
<th>RESULTS Outcome Measure and time period</th>
<th>Reported Measures</th>
<th>Estimated Effect Size</th>
<th>Absolute pct pt change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown (2006) (2004)</td>
<td>Grand Rapids, MI, USA Urban Adults and children with moderate or severe asthma, mixed income N=239 (110 adults, 129 children)</td>
<td>Home-based asthma education AE, EA, EE, SM 12 mo Comparison: usual care</td>
<td>% population with asthma acute care visits in last 6 mo</td>
<td>Pre (post) Children: I: NR (22.7%) C: NR (38.1%) HR (95% CI): 0.62 (0.33-1.19) p=0.29 Adults: I: NR (23.5%) C: NR (23.7%) HR (95% CI): 1.08 (0.50-2.33) p=0.85</td>
<td></td>
<td>-15.4</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Location</td>
<td>Sample Description</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Carter (2001) (NR)</td>
<td>Atlanta, GA-Grady Clinic</td>
<td>Urban, African American children with asthma, low income</td>
<td>Asthma home intervention including allergen avoidance</td>
<td>Pre (post)</td>
<td>Absolute Mean Difference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EA, EE, ER</td>
<td></td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 mo Control: no home visits until after study completed, routine medical care Placebo: home visits with ineffective ER, EE (ineffective mattress covers, roach traps, etc.)</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% of children with asthma acute care visits/past 3 mo</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 cities, US Urban</td>
<td>National Cooperative Inner-City Asthma Study, NCICAS (Phase II)</td>
<td>Mean # of unscheduled visits/yr at 12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 – 11 yo children with physician diagnosed moderate to severe asthma, African American, low income N = 1033</td>
<td>Interventions to reduce asthma symptoms of inner city children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA, EE, ER, SM, SS Tailored intervention 24 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison: Usual care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment: Home visit only for pest control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hasan (2003)</th>
<th>(1998-1999)</th>
<th>Least: Before-After</th>
<th>Fair : 4 limitations</th>
<th>Academic Medical Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint, MI, USA Urban</td>
<td>Home-based asthma education program</td>
<td>Mean # of asthma ED visits/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children with previous asthma hospitalization N=142</td>
<td>CC, EE, SM 12 mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home-based asthma education program</td>
<td>Mean # of hospitalizations/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total # of hospital visits/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hughes (2001)</th>
<th>(2001)</th>
<th>Greatest (RCT)</th>
<th>Fair (2 limitations)</th>
<th>Children’s Hospital, Health Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova Scotia, Canada Unknown</td>
<td>Home-based asthma education program</td>
<td>Total # of hospital visits/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children with previous asthma hospitalization N=95</td>
<td>EA, EE, SM Tailored intervention 24 mo</td>
<td>Total # of ED visits/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total # of children with asthma acute care visits/past 12 mo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre (post)</th>
<th>I: NR (2.64)</th>
<th>C: NR (2.85)</th>
<th>Difference</th>
<th>95% CI: -0.62, 0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean # of unscheduled visits/yr at 12 months</td>
<td>-0.21</td>
<td></td>
<td>p=0.32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre (post)</th>
<th>I: NR (14.80%)</th>
<th>C: NR (18.90%)</th>
<th>Difference</th>
<th>95% CI: -8.75, 0.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of children with hospital visits in the past 12 mo</td>
<td>-4.19</td>
<td></td>
<td>p=0.071</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre (post 12mo)</th>
<th>I: NR (20)</th>
<th>C: NR (25)</th>
<th>Difference</th>
<th>95% CI: -8.75, 0.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of hospital visits/yr</td>
<td>-0.15</td>
<td></td>
<td>p=0.071</td>
<td></td>
</tr>
</tbody>
</table>

| **Absolute Mean Difference** | -0.21 |
| **Absolute pct pt change** | -4.1 |

| **Absolute Mean Difference** | -0.10 |
| **Absolute pct pt change** | -0.7 |

<p>| Absolute Mean Difference | -0.10 |
| Absolute pct pt change | 6 |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Participants</th>
<th>Intervention</th>
<th>Pre (post)</th>
<th>Absolute Mean Difference</th>
<th>Absolute pct pt change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kercsmar (2006)</td>
<td>Cleveland, OH, USA Urban</td>
<td>African American children, low income</td>
<td>Asthma environmental intervention aimed at home moisture sources EA, EE, ER, SM</td>
<td>Mean # of asthma acute care visits/yr</td>
<td>I: NR (0.28)</td>
<td>-0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 mo</td>
<td></td>
<td>C: NR (0.91) p=0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison: SM and EE (offered ER at end of study)</td>
<td>% population with ≥1 ED or inpatient visit</td>
<td>I: NR (17.2)</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: NR (36.4) p=0.15</td>
<td></td>
</tr>
<tr>
<td>Klinnert (2005)</td>
<td>Denver, CO USA Urban</td>
<td>Low income children ages 9-24mo with wheezing episodes (majority Hispanic)</td>
<td>Childhood Asthma Prevention Study (CAPS)</td>
<td>Mean # of hospitalizations/yr at 12 mo</td>
<td>I: 0.68 (0.15)</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asthma education, ETS and allergen reduction intervention</td>
<td>Mean # of ED visits/yr at 12 mo</td>
<td>C: 0.52 (0.11) p=0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EA, EE, ER, SM, SS 4 years</td>
<td></td>
<td>I: 1.91 (0.66)</td>
<td>-0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison: Baseline home assessment and usual care; educational videotape about asthma</td>
<td></td>
<td>C: 1.52 (0.53) p=0.40</td>
<td></td>
</tr>
<tr>
<td>Krieger (2005)</td>
<td>Seattle, WA, USA Urban</td>
<td>Low income children age 4-12 with persistent asthma</td>
<td>Seattle-King County Healthy Homes Project 5-9 home visits</td>
<td>% of children with asthma acute care visits/past 2 mo</td>
<td>I: 23.4 (8.4)</td>
<td>-11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EA, EE, ER, SS Tailored intervention</td>
<td></td>
<td>C: 20.2 (16.4) P=0.026</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 mo</td>
<td>GEE coefficient (95% CI): -0.97 (-1.8, -0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison: Home visits with EA, low intensity EE, ER (allergen impermeable covers and minor education)</td>
<td>OR (95 % CI): 0.38 (0.16, 0.89) P=0.026</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Krieger (2009)** | Seattle, WA, USA
Urban
Low income children age 3-13 with persistent or uncontrolled asthma
N=309 | Seattle-King County Healthy Homes II Project
4 home visits by CHW
CC, EA, EE, ER, SM, SS
Tailored intervention
15 mo
Comparison: Clinic visits with EE, SM, SS, CC (no home visits) | % of children with asthma acute care visits/past 3 mo
Pre (post)
I: 47.4 (24.4)
Difference (95% CI): -23.1 (-32.6, -13.6)
C: 49 (31.4)
Difference (95% CI): -17.6 (-27.2, -0.08)
OR (95% CI): 0.69 (0.38, 1.26)
P < 0.228 | Absolute pct pt change
-5.4 |
| **Levy (2006)** | Boston, MA USA
N = 58
Children with asthma living in public housing;
Boston Healthy Public Housing Initiative
CBPR research study of multifaceted in-home environmental intervention; mainly integrated pest management
EA, EE, ER, SM, SS
6 mo
Comparison: None | Total # of hospitalizations
No change in hospitalizations | |
<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Design</th>
<th>Quality</th>
<th>Setting</th>
<th>Population</th>
<th>N</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Pre (post)</th>
<th>Absolute Mean Difference (CI)</th>
<th>Absolute pct pt change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan (2004)</td>
<td>Greatest: RCT</td>
<td>Good (1 limitation)</td>
<td>NY, MA, TX, AZ, IL, WA, NC; USA</td>
<td>Urban</td>
<td>Atopic children 5-11 with previous asthma ED visit or hospitalization in past 6mo</td>
<td>5 (+2) home visits</td>
<td>EA, EE, ER Tailored intervention</td>
<td>24 mo</td>
<td>Mean # of ED visits/yr at 12 mo</td>
<td>I: NR (0.93) C: NR (1.08)</td>
<td>-0.14 (0.17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>937</td>
<td></td>
<td></td>
<td></td>
<td>Mean # of UO visits/yr at 12 mo</td>
<td>I: NR (1.28) C: NR (1.49)</td>
<td>-0.21 (0.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean # of combined ED, UO visits/yr at 12 mo</td>
<td>I: NR (2.22) C: NR (2.57)</td>
<td>-0.35 (0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% of children with >1 asthma hospitalization /yr at 12 mo</td>
<td>I: NR (17.1) C: NR (15.5)</td>
<td>+1.6 (0.56)</td>
</tr>
<tr>
<td>Nicholas (2005)</td>
<td>Least (before-after)</td>
<td>Fair (4 limitations)</td>
<td>Harlem, NYC, USA</td>
<td>Urban</td>
<td>Children with asthma living in the 60 block radius of Central Harlem</td>
<td>Multiple home visits</td>
<td>EA, EE, ER, SM, SS</td>
<td>18 mo</td>
<td>% of children with ED asthma visits/yr</td>
<td>Pre (post) I: 35.0% (14.3%) C: 39.7% (15.2%)</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Oatman (2007)</td>
<td>Least (before-after)</td>
<td>Fair (4 limitations)</td>
<td>Minneapolis, MN, USA</td>
<td>Urban</td>
<td>Children with persistent asthma</td>
<td>1 home visit + 2 f/u visits</td>
<td>AE, EA, EE, ER Tailored intervention</td>
<td>12 mo</td>
<td>Mean # of hospital visits/yr at 12 mo</td>
<td>Pre (post) I: 0.07 (0.05) C: 0.97 (1.8)</td>
<td>Difference: -0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td>Mean # of ED visits/yr at 12 mo</td>
<td>Pre (post) I: 1.82 (0.10) C: 0.97 (1.8)</td>
<td>Difference: +0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean # of UO visits/yr at 12 mo</td>
<td>Pre (post) I: 1.82 (0.10) C: 0.97 (1.8)</td>
<td>Difference: -1.35</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Location</td>
<td>Setting</td>
<td>Population</td>
<td>Intervention</td>
<td>Comparison</td>
<td>Outcome</td>
<td>Pre (post)</td>
<td>Absolute pct pt change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker (2007)</td>
<td>Detroit, MI, USA Urban</td>
<td>Community Action Against asthma (CAAA)</td>
<td>% of children with acute care visits/12 mo</td>
<td>(I: 65 \ (59)) (C: 58 \ (73)) (-21)</td>
<td>(\text{OR (95% CI): 0.40 (0.22, 0.74)})</td>
<td>(p = 0.004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primomo (2006)</td>
<td>Tacoma, WA, USA Urban</td>
<td>Clean Air For Kids (CAFK) partnership</td>
<td>% of children with asthma ED visits/yr</td>
<td>(50% \ (45%)) (p=0.30)</td>
<td>(p = 0.004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelledy (2005)</td>
<td>Little Rock, AK, USA Urban</td>
<td>Pilot study including 8 home visits by respiratory therapists for asthma</td>
<td>Mean # of ED visits/yr</td>
<td>1.78 (0.33) (\text{Effect: -82% reduction (p=0.001)})</td>
<td>(p = 0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean # of UO visits/yr</td>
<td>4.22 (0.61) (\text{Effect: -86% reduction (p=0.001)})</td>
<td>(p = 0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean # of hospitalizations/yr</td>
<td>6.39 (2.17) (\text{Effect: -66% reduction (p=0.001)})</td>
<td>(p = 0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least (before-after)</td>
<td>Total # of hospitalizations/yr</td>
<td>18 (8) Effect: -56% reduction p=0.076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair (4 limitations)</td>
<td>Total # of ED visits/yr</td>
<td>20 (7) Effect: -65% reduction p=0.038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Medical Center; Public Health Dept</td>
<td>Total # of unscheduled clinic visits/yr</td>
<td>40 (22) Effect: -45% reduction p=0.063</td>
<td>-0.42</td>
<td>-0.54</td>
<td>-0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Qualifying Studies for Home-based Asthma Interventions: Quality of Life Outcomes

<table>
<thead>
<tr>
<th>Author & Year (Study Period)</th>
<th>Location, Country Urbanicity</th>
<th>Intervention</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barton (2007) (1999 – 2000)</td>
<td>Torbay, UK Rural</td>
<td>Improving housing conditions in past 1 month</td>
<td>Mean Symptom score in past 1 month</td>
</tr>
<tr>
<td>Greatest: Group RCT Fair (4 limitations) Government Public Health and Community Partnership Comment: randomized by house</td>
<td>Children and adults Residents of Watcombe houses, white, mixed income N =126 (45 adults, 81 children)</td>
<td>Watcombe Housing Study</td>
<td>(decreased=improved)</td>
</tr>
<tr>
<td>Greatest: Individual RCT Fair (3 limitations) Academic Medical Center</td>
<td>Children with physician-diagnosed asthma, African American, low income N = 100</td>
<td>Home environmental intervention in inner city</td>
<td>% of children reporting any daytime symptoms in the previous 2 weeks at 12 months</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Sample Description</td>
<td>Interventions</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Evans (1999)</td>
<td>8 cities, US</td>
<td>5 – 11 yo children with physician diagnosed moderate to severe asthma, African American, low income</td>
<td>National Cooperative Inner-City Asthma Study, NCICAS (Phase II)</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>N = 1033</td>
<td>Interventions to reduce asthma symptoms of inner city children</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison: Usual care</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comment: Home visit only for pest control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasan (2003)</td>
<td>Flint, MI, USA</td>
<td>Inner City children with previous asthma hospitalization</td>
<td>Home-based asthma education program</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>N=142</td>
<td>EE, CC, SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pre: (post)</td>
</tr>
<tr>
<td>Kercsmar (2006)</td>
<td>Cleveland, OH, USA</td>
<td>African American children, low income</td>
<td>Asthma environmental intervention aimed at home moisture/mold sources</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>N=62 children</td>
<td>EA, ER, EE, SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison: SM and EE (offered ER at end of study)</td>
</tr>
<tr>
<td>Study (2005)</td>
<td>Location</td>
<td>Population</td>
<td>Study Design</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Klinnert (2005)</td>
<td>Denver, CO, USA</td>
<td>Urban</td>
<td>Low income children ages 9-24mo with wheezing episodes (majority Hispanic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N = 181 children</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Childhood Asthma Prevention Study (CAPS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EA, EE, ER, SM, SS</td>
</tr>
<tr>
<td>Krieger (2005)</td>
<td>Seattle, WA, USA</td>
<td>Urban</td>
<td>Low income children age 4-12 with persistent asthma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seattle-King County Healthy Homes Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-9 home visits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EA, EE, ER, SS Tailored intervention</td>
</tr>
<tr>
<td>Krieger (2008)</td>
<td>Seattle, WA, USA Urban</td>
<td>Seattle-King County Healthy Homes II Project</td>
<td>Pre (post)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Greatest: (RCT) Fair (2 limitations) Public Health Department Academic Medical Center Community collaboration</td>
<td>Low income children age 3-13 with persistent or uncontrolled asthma N=309</td>
<td>4 home visits by CHW EA, EE, ER, CC, SM, SS Tailored intervention 15 mo Comparison: Clinic visits with EE, SM, SS, CC (no home visits)</td>
<td></td>
</tr>
<tr>
<td>mean number of asthma symptom days in last 2 wks Comment: not reported-derived from symptom free days gained</td>
<td>Symptom Free Days gained in the last 2 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caregiver QoL score Comment: increase = improved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre (post)</td>
<td>I: 9.3 (11.3); Difference (95%CI) 1.9 (1.1, 2.8) C: 9.5 (10.8) Difference (95%CI) 1.3 (0.5, 2.1) OR (95% CI) 0.94 (0.02, 1.86) p < 0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I: 5.6 (6.2) Difference (95% CI) 0.6 (0.4, 0.8) C: 5.6 (6.0) Difference (95% CI)0.4 (0.3, 0.6) OR (95% CI) 0.22 (0.00, 0.44) p < 0.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute mean difference</td>
<td>-0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Location</td>
<td>Sample Description</td>
<td>Methodology</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Levy (2006)</td>
<td>Boston, MA, USA Urban</td>
<td>Children aged 4 – 17 with self reported asthma and living in one of the targeted housing developments N = 58</td>
<td>Boston Healthy Public Housing Initiative CBPR research study of multifaceted in-home environmental interventions for children with asthma living in public housing; mainly integrated pest management EA, EE, ER, SM, SS 5 months</td>
</tr>
<tr>
<td>Morgan (2004)</td>
<td>New York, MA, TX, AZ, IL, WA, NC; USA Urban</td>
<td>Atopic children 5-11 with previous asthma ED visit or hospitalization in past 6mo N= 937</td>
<td>Outer City Asthma Study, (ICAS) 5 (+2) home visits EA, EE, ER Tailored intervention 24 mo</td>
</tr>
<tr>
<td>Nicholas (2005)</td>
<td>Harlem, NYC, USA Urban</td>
<td>Children with asthma living in the 60 block radius of Central Harlem N=314</td>
<td>Harlem Children’s Zone Project Multiple home visits EA, EE, ER, SM, SS 18 mo</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Location</td>
<td>Setting</td>
<td>Participants</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>Oatman (2007)</td>
<td>Minneapolis, MN, USA</td>
<td>Urban</td>
<td>Children with persistent asthma</td>
</tr>
<tr>
<td>Parker (2007)</td>
<td>Detroit, MI, USA</td>
<td>Urban</td>
<td>Children with persistent asthma</td>
</tr>
<tr>
<td>Primomo (2006)</td>
<td>Tacoma, WA, USA</td>
<td>Urban</td>
<td>Children with caregiver reported asthma</td>
</tr>
</tbody>
</table>

- I: intervention, C: control
<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Region/Country</th>
<th>Setting</th>
<th>Sample Details</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
<th>Pre (Post)</th>
<th>Relative % change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith (2005) (1999-2003)</td>
<td>Norfolk and Suffolk, UK</td>
<td>Academic Medical Centers and Private Clinics</td>
<td>Adults with severe asthma nonadherent to usual therapy</td>
<td>Six mo psycho educational intervention targeting asthma education and management AE, EE (minor), SM, SS</td>
<td>Mean asthma QOL score at 12 mo (Living with Asthma questionnaire)</td>
<td>I: 1.20 (1.01) C: 1.14 (1.02)</td>
<td>0.05 (-0.16, +0.26) p=0.66</td>
</tr>
<tr>
<td>Somerville (2000)</td>
<td>Cornwall, UK</td>
<td>Health Department and Health Authority</td>
<td>Children with moderate to severe asthma</td>
<td>Housing improvements (heating/moisture control) tailored to exposure</td>
<td>Median symptom score (wheeze by day) in the last 4 wks</td>
<td>2 (1) p<0.001</td>
<td>-20</td>
</tr>
<tr>
<td>Thyne (2006) (1999-2001)</td>
<td>San Francisco, CA, USA</td>
<td>Academic Medical Centers, Community partnerships, Government organizations</td>
<td>Urban Low income children, majority African American and Hispanic</td>
<td>Yes We Can Urban Asthma Partnership Provider education, clinic education, and home visits (medical/social model)</td>
<td>Mean number of asthma symptom days in last 2 wks</td>
<td>5.1 (2.8) p<0.01</td>
<td>-2.3</td>
</tr>
</tbody>
</table>
Qualifying Studies for Home-based Asthma Interventions: Physiologic Outcomes

<table>
<thead>
<tr>
<th>Author & Year (Study Period)</th>
<th>Location, Country, Urbanicity</th>
<th>Study Population</th>
<th>Intervention</th>
<th>Results</th>
<th>Reported Measures</th>
<th>Estimated Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barton (2007)
(1999 – 2000)</td>
<td>Torbay, UK, Rural</td>
<td>Children and adults
Residents of Watcombe houses, white, mixed income
N = 126 (45 adults, 81 children)</td>
<td>Watcombe Housing Study
Improving housing conditions
EA, ER (major)
12 months
Comparison: Delayed intervention</td>
<td>% predicted FEV1/FVC and peak flow</td>
<td>No changes from baseline</td>
<td>-</td>
</tr>
<tr>
<td>Eggleston (2005)
(2002-2003)</td>
<td>Baltimore, MD, US, Urban</td>
<td>Children with physician-diagnosed asthma, African American, low income
N = 100</td>
<td>Home environmental intervention in inner city
Reduce environmental pollutants and allergen exposure in homes
EA, EE, ER Tailored intervention
12 months
Comparison: Delayed intervention</td>
<td>FEV 1 % predicted</td>
<td>Pre (post)
Ⅰ: 101 (94)
C:100 (101)
No change from baseline</td>
<td>-</td>
</tr>
<tr>
<td>Hughes (2001)</td>
<td>Nova Scotia, Canada</td>
<td>Home-based asthma education program</td>
<td>FEV1, FEV1/FVC, RV/TLC, exp flow 50% and 25%, exp flow (% predicted)</td>
<td>Expiratory flow rates at 50% and 25% were significant at 12 mo (p=0.0001, p=0.001) but differences disappeared by 24 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greatest (RCT)</td>
<td>Unknown</td>
<td>EA, EE, SM Tailored intervention</td>
<td>24 mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair (2 limitations)</td>
<td>Children with previous asthma hospitalization</td>
<td>N=95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children's Hospital, Health Dept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klinnert (2005)</th>
<th>Denver, CO USA</th>
<th>Childhood Asthma Prevention Study (CAPS)</th>
<th>FEV0.5 (liters)</th>
<th>Pre (post)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair (3 limitations)</td>
<td>Low income children ages 9-24mo with wheezing episodes (majority Hispanic)</td>
<td>EA, EE, ER, SM, SS</td>
<td>FEV0.5/FVC</td>
<td>-0.01 (CI: -0.06 to +0.04) (p=0.59)</td>
</tr>
<tr>
<td>Academic Medical Center and Private clinics</td>
<td>N=181 children</td>
<td>4 years</td>
<td></td>
<td>I: NR (0.74) C: NR (0.79)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparison: Baseline home assessment and usual care; educational videotape about asthma</td>
<td></td>
<td>-0.04 (CI: -0.11 to +0.02) (p=0.15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I:NR (0.85) C: NR (0.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0.02 (CI: -0.03 to +0.07) (p=0.52)</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Details</td>
<td>Location</td>
<td>Sample Description</td>
<td>Intervention</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Morgan (2004)</td>
<td>Greatest: RCT Good (1 limitation)</td>
<td>NY, MA, TX, AZ, IL, WA, NC; USA Urban</td>
<td>Atopic children 5-11 with previous asthma ED visit or hospitalization in past 6mo N= 937</td>
<td>Inner City Asthma Study (ICAS) 5 (+2) home visits EA, EE, ER Tailored intervention 24 mo Comparison: usual care and 2 home visits (measurements only)</td>
</tr>
<tr>
<td>Parker (2007)</td>
<td>Greatest (RCT) Fair (2 limitations)</td>
<td>Detroit, MI, USA Urban</td>
<td>Children with persistent asthma N= 298</td>
<td>Community Action Against asthma (CAAA) Community-based participatory research 9 home visits by community health workers AE, EA, EE, ER, SS Tailored intervention 12 mo Comparison: Baseline (AE only) and f/u visit (measurement only)</td>
</tr>
<tr>
<td>Thyne (2006) (1999-2001)</td>
<td>Least (before-after)</td>
<td>Fair 4 limitations</td>
<td>Academic Medical Centers, Community partnerships, Government organizations</td>
<td>San Francisco, CA, USA Urban</td>
</tr>
</tbody>
</table>
Qualifying Studies for Home-based Asthma Interventions: Productivity Outcomes

<table>
<thead>
<tr>
<th>Author & Year (Study Period) Design Suitability: Design Quality of Execution Implementer</th>
<th>Location, Country Urbanicity Study Population Sample Size</th>
<th>Intervention • Name/ Definition • Follow up time Comparison</th>
<th>RESULTS</th>
<th>Outcome Measure and time period</th>
<th>Reported Measures</th>
<th>Estimated Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown (2006) (2004) Greatest: RCT Fair (3 limitations) Academic Medical Center and Community Hospital</td>
<td>Grand Rapids, MI, USA Urban Adults and children with moderate or severe asthma, mixed income N=239 (110 adults, 129 children)</td>
<td>Home-based asthma education AE, EA, EE, SM 12 mo Comparison: usual care</td>
<td>% of adults and children that missed ≥ 1 day of work or school (reason unspecified)/ 6mo</td>
<td>Pre (post)</td>
<td>I: NR (58.1) C:NR (54.9) (p=0.62)</td>
<td>Absolute pct pt change + 3</td>
</tr>
<tr>
<td>Hasan (2003) (1998-1999) Least : Before-After Fair: 4 Limitations Academic Medical Center</td>
<td>Flint, MI, USA Urban Inner City children with previous asthma hospitalization N=142</td>
<td>Home-based asthma education program CC, EE, SM 12 mo</td>
<td>% children missing ≥8 school day from asthma /yr</td>
<td>Pre (post)</td>
<td>35 (12) (p<0.01)</td>
<td>Absolute pct pt change -23</td>
</tr>
<tr>
<td>Hughes (2001) Greatest (RCT) Fair (2 limitations) Children’s Hospital, Health Dept</td>
<td>Nova Scotia, Canada Unknown Children with previous asthma hospitalization N=95</td>
<td>Home-based asthma education program EA, EE, SM Tailored intervention 24 mo</td>
<td>Mean # school days missed from asthma/yr</td>
<td>Pre (post 12mo)</td>
<td>I: 10.8 (5.8) C:10.4 (8.8)</td>
<td>Absolute Mean Difference -3.4</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Location</td>
<td>Description</td>
<td>Intervention</td>
<td>Pre (post)</td>
<td>Absolute Pct Pt Change</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Krieger (2005)</td>
<td>Seattle, WA, USA</td>
<td>Seattle-King County Healthy Homes Project</td>
<td>Tailored intervention</td>
<td>N= 274</td>
<td>% children missing ≥1 school day from asthma /2 wks</td>
<td>I: 31.1 (12.2) C: 28.4 (20.3) GEE: -0.77 (-1.7, 0.16) OR: 0.46 (0.18, 1.18) P<0.105</td>
</tr>
<tr>
<td>Krieger (2008)</td>
<td>Seattle, WA, USA</td>
<td>Seattle-King County Healthy Homes II Project</td>
<td>Tailored intervention</td>
<td>N=309</td>
<td>% children missing ≥1 school day from asthma /2 wks</td>
<td>I: 16.7 (9) Difference (95% CI): -7.7 (-15.1, 0.00) C: 18.3 (11.8) Difference (95% CI): -6.5 (-13.4, 0.00) OR (95% CI): 0.81 (0.35-1.88) P < 0.624</td>
</tr>
<tr>
<td>Morgan (2004)</td>
<td>NY, MA, TX, AZ, IL, WA, NC; USA</td>
<td>Inner City Asthma Study ICAS</td>
<td>Tailored intervention</td>
<td>N= 937</td>
<td># school days missed from asthma in last 2 wks</td>
<td>I: 1.1 (0.65) C: 0.9 (0.82) Difference: -0.17 (p=0.003)</td>
</tr>
</tbody>
</table>

Notes:
- **Krieger (2005)**: Greatest: RCT, Fair (3 limitations), Public Health Department, Academic Medical Center, Community collaboration, Comments: Uses community health workers (CHW)
- **Krieger (2008)**: Greatest: (RCT), Fair (2 limitations), Public Health Department, Academic Medical Center, Community collaboration, Comments: Uses community health workers (CHW)
- **Morgan (2004)**: Greatest: RCT, Good (1 limitation), 7 sites: Academic medical schools and research centers
| **Nicholas (2005)** | Harlem, NYC, USA Harlem Children’s Zone Project
Urban
Children with asthma living in the 60 block radius of Central Harlem
N=314 | % children missing ≥1 school day from asthma/2 wks at 12 mo
Pre (post)
I: 23.3 (7.1)
P<0.001 | Pre (post)
Absolute Pct Pt Change
-16.2 |

| **Oatman (2007)** | Minneapolis, MN, USA Reducing Environmental Triggers of Asthma Program (RETA)
Urban
Children with persistent asthma
N = 64 | Mean # of school days missed (reason unspecified)/3 mo at 12 mo
Pre (post)
7.3 (0.1)
Difference: -6.7 | Pre (post)
Absolute Mean Difference
-31.2 |

| **Shelledy (2005)** | Little Rock, AK, USA 8 home visits by respiratory therapists
Urban
Children age 3-18 with asthma and high users of health care
N = 18 | Mean # of school days missed (reason unspecified)/ 12 mo
Pre (post)
I: 19 (6.69)
Effect: -65% change
p = 0.002 | Pre (post)
Absolute Mean Difference
-12.3 |

| **Somerville (2000)** | Cornwall, UK Housing improvements (heating/moisture control) tailored to exposure
EA, ER (major)
11.7 mo (average) | Mean # days lost from school due to asthma/ 3 mo
Pre (post)
I: 5.8 (1.6) | Pre (post)
Absolute Mean Difference
-18.2 |

Notes:
1. BL = Baseline, I = Intervention, C = Control, P = Placebo
2. ER = Environmental Remediation, EA = Environmental Assessment, EE = Environmental Education, SM = Self management education, SS + Social Services
3. NR = Not reported, NS = Not significant
4. Outcomes:
 • QOL = Quality of Life
 • HCU = Health Care Utilization
 • PRO = Productivity
 • PHYS = Physiologic Measures
 • AL = Allergen Levels
 • AC = Asthma Control
 • AMB = Asthma Management Behaviors
 • TRB = Trigger Reduction Behaviors
5. CBPR = Community Based Participatory Research
6. RCT = Randomized Controlled Trial

Disclaimer: The findings and conclusions on this page are those of the Task Force on Community Preventive Services and do not necessarily represent those of CDC.

Sample Citation: The content of publications of the Guide to Community Preventive Services is in the public domain. Citation as to source, however, is appreciated. Sample citation: Guide to Community Preventive Services. Asthma control: home-based multi-trigger, multicomponent environmental interventions, summary evidence tables. www.thecommunityguide.org/asthma/supportingmaterials/SET-multicomponent.pdf. Last updated: MM/DD/YYYY.